Complex-analytic approach to quantum groups

O. Yu. Aristov

Quantum Groups Seminar, February 7, 2023

Quantum group example (not very popular but interesting): a deformation of $U(\mathfrak{af}_1)$, the universal enveloping algebra of the non-abelian 2-dimensional complex Lie algebra (corresponding to the group of affine transformations of \mathbb{C}).

Generators X and Y subject to [X, Y] = Y.

Deformed multiplication (\hbar is a hint of Planck constant)

$$[X,Y] = \frac{\sinh \hbar Y}{\sinh \hbar}.$$

(Aizawa–Sato, 1994, similar relations in Majid, 1995) Deformed comultiplication and antipode:

$$\Delta \colon X \mapsto X \otimes e^{-\hbar Y} + e^{\hbar Y} \otimes X, \qquad Y \mapsto 1 \otimes Y + Y \otimes 1;$$

$$S \colon X \mapsto -X - \frac{\hbar}{\sinh \hbar} \sinh \hbar Y, \qquad Y \mapsto -Y.$$

Common problem: sinh and other functions are not polynomials.

Common solution: \hbar -adic form: treat \hbar as a formal variable and $U_{\hbar}(\mathfrak{af}_1)$ as an algebra over $\mathbb{C}[[\hbar]]$ (formal power series).

Another solution: sinh etc are entire functions! Where we can take the entire function of an element? In a Banach algebra. Moreover, entire functions can be applied to elements of Arens-Michael algebras (projective limits of Banach als.). Now we treat \hbar as a fixed number in $\mathbb C$ (with sinh $\hbar \neq 0$).

Let $U(\mathfrak{af}_1)_\hbar$ be the universal Arens-Michael algebra generated by X and Y subject to $[X,Y]=\sinh\hbar Y/(\sinh\hbar)$, i.e. the quotient of the algebra \mathscr{F}_n of free entire functions over the closed two-sided ideal generated by the relation.

Free entire functions:

$$\mathscr{F}_n = \Big\{ a = \sum_{\alpha \in W_n} c_{\alpha} \zeta_{\alpha} \colon \|a\|_{\rho} := \sum_{\alpha} |c_{\alpha}| \, \rho^{|\alpha|} < \infty \ \forall \rho > 0 \Big\}.$$

 ζ_1,\ldots,ζ_n are the generators. In our case, $\zeta_1\mapsto X$, $\zeta_2\mapsto Y$.

So $\widetilde{U}(\mathfrak{af}_1)_\hbar$ is holomorphically finitely generated (in short, HFG) in the sense of Pirkovskii, 2014.

Theorem (A.,2020)

As a LCS,

$$\widetilde{U}(\mathfrak{af}_1)_{\hbar} \cong \prod_{n \in \mathbb{Z}} \mathbb{C}[[Y_n]] \widehat{\otimes} \mathcal{O}(\mathbb{C}),$$

where (Y_n) are formal variables corresponding to zeros of sinh.

Here $\widehat{\otimes}$ is the complete projective tensor product of locally convex spaces and $\mathcal{O}(\mathbb{C})$ is the algebra of holomorphic functions.

 $(\widehat{\otimes} \text{ is compatible with holomorphic functions:}$

$$\mathcal{O}(U) \widehat{\otimes} \mathcal{O}(V) \cong \mathcal{O}(U \times V).)$$

Hopf algebra structure?

A Hopf $\widehat{\otimes}$ -algebra (read as "topological Hopf algebra") = Hopf algebra in the monoidal category of complete locally convex spaces with $\widehat{\otimes}$.

Theorem (A.,2020)

 $\widetilde{U}(\mathfrak{af}_1)_{\hbar}$ is a Hopf $\widehat{\otimes}$ -algebra with respect to Δ , ε and S determined by the formulas above.

Definition

Hopf HFG algebra:= Hopf ⊗-algebra that is HFG.

Thus, $\widetilde{U}(\mathfrak{af}_1)_{\hbar}$ is a Hopf HFG algebra.

Drinfeld-Jimbo algebras.

DJ algebras are deformations of $U(\mathfrak{g})$ (the universal enveloping algebra), where \mathfrak{g} is a semisimple Lie algebra. (All algebras over \mathbb{C} .) $U(\mathfrak{g})$ is the universal associative algebra generated by \mathfrak{g} . E.g., \mathfrak{sl}_2 is the Lie algebra with generators E, F, H subject to

$$[H, E] = 2E, \quad [H, F] = -2F, \quad [E, F] = H$$

and $U(\mathfrak{sl}_2)$ is the un. associative algebra subject to this relations.

\hbar -adic Drinfeld-Jimbo algebra of \mathfrak{sl}_2

Replace the 3d relation by

$$[E,F] = \frac{\sinh \hbar H}{\sinh \hbar}.$$

 \hbar is a letter not a number and $U_{\hbar}(\mathfrak{sl}_2)$ is an algebra over formal series in \hbar .

Two ways to specialize \hbar to \mathbb{C} . (Below $K := e^H$ and $q := e^{\hbar}$.)

1st: traditional, algebraic exponential form

 $U_q(\mathfrak{sl}_2)$ is the universal associative algebra subject to

$$KEK^{-1} = q^2E, \quad KFK^{-1} = q^{-2}F, \quad [E, F] = \frac{K - K^{-1}}{q - q^{-1}},$$

 $q\in\mathbb{C}$ and $q
eq\pm 1$.

2nd, new, complex-analytic form

Let $\hbar \in \mathbb{C}$ and $\sinh \hbar \neq 0$. Then $U(\mathfrak{sl}_2)_{\hbar}$ is defined as the universal Arens-Michael algebra generated by E, F, H subject to

$$[H,E]=2E, \quad [H,F]=-2F, \quad [E,F]=rac{\sinh\hbar H}{\sinh\hbar}\,.$$

Proposition (A., 2020)

 $\widetilde{U}(\mathfrak{sl}_2)_\hbar$ is an infinite-dimensional Hopf HFG algebra w.r.t. the comultiplication Δ , counit ε and antipode S determined by same formulas as for the \hbar -adic form $U_\hbar(\mathfrak{sl}_2)$.

Explicit formulas:

$$\Delta \colon H \mapsto H \otimes 1 + 1 \otimes H,$$

$$\Delta \colon E \mapsto E \otimes e^{\hbar H} + 1 \otimes E,$$

$$\Delta \colon F \mapsto F \otimes 1 + e^{-\hbar H} \otimes F;$$

$$S \colon H \mapsto -H, \quad E \mapsto -Ee^{-\hbar H}, \quad F \mapsto -e^{\hbar H}F;$$

$$\varepsilon \colon H, E, F \mapsto 0.$$

My initial motivation: to find the Arens-Michael envelope of $U_q(\mathfrak{sl}_2)$.

The AM envelope arises when we approximate an algebra by Banach algebras.

If A is an associative \mathbb{C} -algebra, then the AM envelope is the completion \widehat{A} w.r.t. all possible submultiplicative seminorms $(\|ab\| \leqslant \|a\| \|b\|)$ with the homomorphism $\iota \colon A \to \widehat{A}$ (eq. the projective limit of all Banach algebra completions).

Universal property

Every homomorphism from A to a Banach algebra factors on ι .

The structure of \widehat{A} is closely related to representations of A on Banach spaces.

The AM envelope functor can be considered as a functor from NC algebraic geometry to NC complex-analytic geometry (because it works well in the commutative case, Pirkovskii, 2006)

Arens-Michael envelopes

H is a Hopf algebra $\Rightarrow \widehat{H}$ is a Hopf $\widehat{\otimes}$ -algebra (Pirkovskii). So: H is an affine (f.g.) Hopf alg. $\Rightarrow \widehat{H}$ is an Hopf HFG alg. $\widehat{U}_{g}(\mathfrak{sl}_{2})$ and $\widetilde{U}(\mathfrak{sl}_{2})_{\hbar}$ are HFG. Structure of underlying LCSs?

AM envelope of the algebraic form

The case |q| = 1 — only partial results.

Pedchenko (2015) found a power series description of $\widehat{U}_q(\mathfrak{sl}_2)$ for |q|=1 (using analytical Ore extensions).

Proposition (A., 2020)

 $q \in \mathbb{C}$ is not a root of unity, $|q| = 1 \Rightarrow \exists$ topologically irreducible representations of $U_q(\mathfrak{sl}_2)$ on a Hilbert space.

Well known

2-dimensional

If q is a root of unity, then all irreducible representations of $U_q(\mathfrak{sl}_2)$ are finite dimensional (three continuous parameters). But there are f.d. representations that are not completely reducible.

When $|q| \neq 1$, the structure of $\widehat{U}_q(\mathfrak{sl}_2)$ is similar to that in the classical undeformed case.

Theorem (Joseph Taylor, 1972, undeformed case)

 $\mathfrak g$ is a semisimple Lie algebra $\Rightarrow \widehat U(\mathfrak g)$ is topologically isomorphic to the direct product of a countable family of full matrix algebras.

Idea of Taylor's proof: pass from g to a semisimple Lie group, which has a compact Lie group as a real form. Next use the representation theory of compact groups.

There is no similar technical tool for $U_q(\mathfrak{sl}_2)$.

Idea of an alternative proof: use an algebraic argument to show that E and F are nilpotent in a Banach algebra.

Theorem (A., 2020)

Let $|q| \neq 1$.

- (A) The range of any homomorphism from $U_q(\mathfrak{sl}_2)$ to a Banach algebra is finite dimensional.
- (B) The AM envelope $\widehat{U}_q(\mathfrak{sl}_2)$ is topologically isomorphic to the direct product of a countable family of full matrix algebras.
- (A) \Rightarrow (B) since every finite-dimensional representation of $U_q(\mathfrak{sl}_2)$ is completely reducible.

Every factor corresponds to a finite-dimensional irreducible representation of $U_q(\mathfrak{sl}_2)$.

Outline of the proof. Analytic part(simple)

Lemma

 $a, c \in B$ anach algebra. If a is invertible and $aca^{-1} = \gamma c$ for $\gamma \in \mathbb{C}$ with $|\gamma| \neq 1$ and $\gamma \neq 0 \Rightarrow c$ is nilpotent.

Proof.

Let $c^n \neq 0 \ \forall n \in \mathbb{N}$.

$$ac^n a^{-1} = \gamma^n c^n \Rightarrow \|\gamma^n c^n\| \leqslant \|a\| \|c^n\| \|a^{-1}\| \Rightarrow |\gamma|^n \leqslant \|a\| \|a^{-1}\| \Rightarrow |\gamma| \leqslant 1$$
. Letting $d := aca^{-1}$ we have similarly $|\gamma|^{-1} \leqslant 1$.

Contradiction.

Let $E, F, K \in B$ (Banach algebra) with quantum \mathfrak{sl}_2 relations. $KEK^{-1} = q^2E$ and $KFK^{-1} = q^{-2}F$ that E and F are nilpotent. (The only analytic idea here.)

Algebraic part of the proof (formulas)

We does need to assume that B is Banach.

It is essential that q is not a root of unity and E and F are nilpotent.

Then $\forall m \exists$ a non-trivial Laurent polynomial in K that belongs to the ideal of $U_q(\mathfrak{sl}_2)$ generated by E^m .

Calculations \Rightarrow the subalgebra generated by E, F, K is f.d.

Complex-analytic form

Putting $K := e^{\hbar H}$ and $q := e^{\hbar} \Rightarrow \exists$ homomorphism

$$U_q(\mathfrak{sl}_2) o \widetilde{U}(\mathfrak{sl}_2)_\hbar \colon E o E, \quad F o F, \quad K o e^{\hbar H}.$$

Some questions (not all) on $\widetilde{U}(\mathfrak{sl}_2)_{\hbar}$ can be reduced to the well-known representation theory of $U_q(\mathfrak{sl}_2)$.

- (A) The range of any cont. homomorphism from $U(\mathfrak{sl}_2)_{\hbar}$ to a Banach algebra is finite dimensional.
- (B) Every continuous finite-dimensional representation of $U(\mathfrak{sl}_2)_{\hbar}$ is completely reducible.
- (C) $\widetilde{U}(\mathfrak{sl}_2)_{\hbar}$ is topologically isomorphic to the direct product of a countable family of full matrix algebras.

Each f.d. irr.rep. of $U(\mathfrak{sl}_2)$ corresponds to two f.d. irr.reps. of $U_q(\mathfrak{sl}_2)$ and an infinite series of f.d. irr.reps.of $\widetilde{U}(\mathfrak{sl}_2)_{\hbar}!$

By definition, the Drinfeld-Jimbo algebra $U_q(\mathfrak{g})$ is generated by a tuple of triples E_j , F_j , K_j subject to relations similar to that for \mathfrak{sl}_2 (inside triples) + additional relations between triples.

Main results on $U_q(\mathfrak{sl}_2)$ also hold for an arbitrary \mathfrak{g} when $|q| \neq 1$.

Theorem (A., 2020)

- (A) The range of any homomorphism from $U_q(\mathfrak{g})$ to a Banach algebra is finite dimensional.
- (B) The Arens-Michael envelope of $U_q(\mathfrak{g})$ is a product of full matrix algebras.
- $\widetilde{U}(\mathfrak{g})_{\hbar}$ is also can be defined!

Table: Banach-space representations of $U_q(\mathfrak{g})$ with \mathfrak{g} semisimple

q	representations	irr. representations
q eq 1	f.d. compl. reducible	f.d.
not root, $ q =1$	no restriction known	∃ top. irr. inf. d.
root	∃ inf. d.	f.d. bounded degree

Table: Banach-space representations of $\widetilde{U}(\mathfrak{sl}_2)_\hbar$

\mathbf{e}^{\hbar}	representations	irr. representations
not root	f.d. compl. reducible	f.d.
root	∃ inf .d	f.d. bounded degree

A piece of NC geometry (over \mathbb{C})

Table: Spaces vs Algebras

Spaces	Comm. algebras	NC
locally compact	comm. C*-algebras	C*-algebras
affine varieties	comm. f.g. algebras	f.g. algebras
complex-analytic	comm. HFG algebras	HFG algebras

- 1) Gelfand-Naimark
- 2) AG
- 3) Forster + Pirkovskii (for f.d. Stein spaces)

Table: Groups vs Hopf algebras

Groups	Comm. Hopf algs	NC
locally compact	comm. C*-algebraic HA	C*-algebraic HA
affine algebraic	comm. f.g. HA	f.g. HA
complex Lie	?	?

2) Cartier's theorem: Every affine algebraic group scheme over a field of characteristic 0 is non-singular.

My suggestion is to use Hopf HFG algebras as analogues of f.d. Stein groups (at least, as first approximation)

Commutative Hopf HFG algebras.

Functor:

complex Lie groups
$$ightarrow$$
 comm. Hopf HFG algebras: $G \mapsto \mathcal{O}(G)$

Standard operations on $\mathcal{O}(G)$ (function algebra):

$$\Delta(f)(g,h) = f(gh), \quad \varepsilon(f) = f(e), \quad S(f)(g) = f(g^{-1}),$$

Theorem (A., 2020)

The restriction of the functor to Stein groups is an anti-equivalence.

The argument is similar to the proof of Cartier's theorem

Outline of the proof:

Sufficiency: G is a Lie group $\Rightarrow \mathcal{O}(G)$ is a Stein algebra \Rightarrow HFG.

Necessity.

Step 1. Forster+Pirkovskii: If H is a comm. Hopf HFG algebra \Rightarrow \exists a Stein space X s.t. $\mathcal{O}(X) \cong H$. Also X is a group.

Step 2. X is reduced. First we show that $\mathcal{O}_{X,e}$ is a Hopf $\widehat{\otimes}$ -algebra. Second, as in Cartier's proof we show that the associated graded algebra of $\mathcal{O}_{X,e}$ is a polynomial algebra. No nilpotent elements.

Step 3. If there is a singular point, then all points are singular (X is a group), which is impossible.

Hence X is a manifold and so it is a Stein group.

So we can treat a general Hopf HFG algebra as a non-comm. analogue of the function algebra on a complex Lie group (at least Stein group).

Dual category — "complex-analytic quantum groups" or "quantum complex Lie groups".

Cocommutative Hopf HFG algebras.

For a Lie group: $\mathscr{A}(G) := \mathcal{O}(G)'$ (strong dual).

The Hopf algebra structure on $\mathbb{C}G$ (the group algebra):

$$\Delta(\delta_{\mathbf{g}}) = \delta_{\mathbf{g}} \otimes \delta_{\mathbf{g}}, \ \varepsilon(\delta_{\mathbf{g}}) = 1, \ S(\delta_{\mathbf{g}}) = \delta_{\mathbf{g}^{-1}}.$$

Extends to $\mathscr{A}(G)$.

Consider the AM envelope.

Theorem (A.)

G is compactly generated $\Leftrightarrow \widehat{\mathscr{A}}(G)$ is a HFG algebra $\Leftrightarrow \widehat{\mathscr{A}}(G)$ is a Fréchet algebra.

Outline of the proof. Compactly generated \Rightarrow HFG (heavily based on the theory of LCSs). Three steps.

Step 1: G is simply connected. $\widehat{U}(\mathfrak{g}) \cong \widehat{\mathscr{A}}(G)$.

Step 2: G is connected. If \widetilde{G} is the universal covering, then $\mathscr{A}(\widetilde{G}) \to \mathscr{A}(G)$ is a quotient map (this follows from Pták's open mapping theorem).

Step 3: G is compactly generated. G_0 is the connected component.

 \exists discrete group Γ and a quotient map $\mathbb{C}\Gamma * \mathscr{A}(G_0) \to \mathscr{A}(G)$ is (free product of $\widehat{\otimes}$ -algebras).

Fréchet \Rightarrow compactly generated: first for discrete, next the general case.

HFG ⇒ Fréchet. Trivial.

Remark

The class of cocommutative Hopf HFG algebras is wider. If \mathfrak{f}_n is the free Lie algebra in n generators, then $\widehat{U}(\mathfrak{f}_n) \cong \mathscr{F}_n$ is a Hopf HFG algebra but there no Lie group s.t. $\widehat{U}(\mathfrak{f}_n) \cong \widehat{\mathscr{A}}(G)$.

Structure of $\widehat{\mathscr{A}}(G)$.

Let G be connected and linear (= \exists a faithful holomorphic finite-dimensional representation). First, look on the LCS structure. \exists composition series for G:

$$E \subset B \subset G$$
,

where G/B is linearly reductive, B/E and E are simply connected nilpotent.

Theorem (A., 2020)

As a LCS,

$$\widehat{\mathscr{A}}(G) \cong [U(\mathfrak{e})] \widehat{\otimes} \widehat{\mathscr{A}}(B/E) \widehat{\otimes} \widehat{\mathscr{A}}(G/B),$$

where e is the Lie algebra of E and [U(e)] is the algebra of all formal power series w.r.t. PBW basis.

For linearly reductive: $\widehat{\mathscr{A}}(G/B)$ is a product of full matrix algebras. For simply connected nilpotent: $\widehat{\mathscr{A}}(B/E)$ is a power series space

(with restrictions on growth).

Look on the algebraic structure.

$$G = ((\cdots (F_1 \rtimes F_2) \rtimes \cdots) \rtimes F_{n-1}) \rtimes G/B,$$

where $F_j \cong \mathbb{C}$.

Theorem (A., 2022)

$$\widehat{\mathscr{A}}(G) \cong (\cdots (\mathbb{C}[[x_1]] \,\widehat{\#} \cdots \mathbb{C}[[x_p]]) \,\widehat{\#} \,\mathfrak{A}_{m-1}) \,\widehat{\#} \cdots \mathfrak{A}_{m-1}) \,\widehat{\#} \cdots \cdots \,\widehat{\#} \,\mathfrak{A}_0) \,\widehat{\#} \cdots \mathfrak{A}_0) \,\widehat{\#} \,\widehat{\mathscr{A}}(G/B),$$

Here $\widehat{\#}$ is the sign of the analytic smash product, $\mathfrak{A}_0, \ldots, \mathfrak{A}_{m-1}$ is a certain algebra of power series with $\mathfrak{A}_0 = \mathcal{O}(\mathbb{C})$, p is the dimension of E.

Holomorphic duality

 C^* -algebraic theory uses invariant weights as a basis for duality.

Complex-analytic approach admits a duality scheme without invariant weights.

Akbarov's holomorphic reflexivity diagram (for complex Lie group):

$$\mathcal{O}(G) \xleftarrow{AM \text{ env}} \mathcal{O}_{exp}(G)$$

$$\downarrow \text{str.dual} \qquad \qquad \downarrow \text{str.dual}$$

$$\mathscr{A}(G) \longmapsto_{AM \text{ env}} \mathscr{\widehat{A}(G)}$$

Vertical arrows are strong duals.

All spaces are Hopf $\widehat{\otimes}$ -algebras.

 $\mathcal{O}(G)$ and $\widehat{\mathscr{A}}(G)$ are Hopf HFG.

 $\mathcal{O}(G)$ is called holomorphically reflexive if the diagram commutes.

Theorem (A.)

Let G be a complex Lie group with finitely many connected components and G_0 the component of 1. Then $\mathcal{O}(G)$ is holomorphically reflexive $\Leftrightarrow G_0$ is linear.

History. Akbarov introduced this scheme (2008) and claimed optimistically that the reflexivity holds for G with countably many components and G_0 algebraic and conjectured (later) that G_0 can be assumed linear.

There was a gap in the proof and counterexamples for the countable case.

Conjecture: The restriction on components can be removed if we use a generalized linearity, i.e., \exists faithful (possibly ∞ -dim.) hol. representation on a Banach space.

Summary

Table: Groups vs Hopf algebras

Groups	Comm. Hopf algs	NC
locally compact	comm. C*-algebraic HA	C*-algebraic HA
affine algebraic	comm. f.g. HA	f.g. HA
Stein	comm. HFG HA	HFG HA

Non-trivial examples: $\widetilde{U}(\mathfrak{af}_1)_{\hbar}$, $\widetilde{U}(\mathfrak{g})_{\hbar}$, $\widehat{U}_q(\mathfrak{g})$. (Life is better when \hbar is a number not a letter!)

The commutative case is understood.

Some results in cocommutative case.

Duality theory without invariant weights.

Open problems and questions.

How does all this relate to C^* -algebraic quantum groups?

Find the structure of $\widetilde{U}(\mathfrak{g})_{\hbar}$ when $\mathfrak{g} \neq \mathfrak{sl}_2$.

Do exist infinite-dimensional irreducible Banach space representations of $U_q(\mathfrak{sl}_2)$ if |q|=1 and q is not a root of unity?

Topologically irreducible i.-d. reps exist (see above).

Are the homomorphisms $\iota\colon U_q(\mathfrak{g})\to \widehat{U}_q(\mathfrak{g})$ and $\theta\colon U_q(\mathfrak{g})\to \widetilde{U}(\mathfrak{g})_\hbar$ always injective?

 ι is injective when |q|=1 (follows Pedchenko's result).

Find the structure of a general (not only associated with a Lie group) cocommutative Hopf HFG algebra.

Are $\widehat{U}_q(\mathfrak{g})$ and $\widetilde{U}(\mathfrak{g})_{\hbar}$ holomorphically reflexive?

References:

- O. Yu. Aristov, Holomorphically finitely generated Hopf algebras and quantum Lie groups, arXiv:2006.12175.
- O. Yu. Aristov, Banach space representations of Drinfeld-Jimbo algebras and their complex-analytic forms, Illinois J. Math. (to appear), arXiv:2012.12565.
- O. Yu. Aristov, *The relation "Commutator Equals Function" in Banach algebras*, Math. Notes, 109:3 (2021), 323–334, arXiv:1911.03293.
- O. Yu. Aristov, *On holomorphic reflexivity conditions for complex Lie groups*, Proc. Edinburgh Math. Soc. (2), 64:4 (2021), 800–821, arXiv: 2002.03617.
- O. Yu. Aristov, Decomposition of the algebra of analytic functionals on a connected complex Lie group and its completions into iterated analytic smash products, arXiv:2209.04192 (in Russian).

Many thanks for your attention!